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Abstract. We study the mechanisms of enstrophy transfer in 2D turbulence. By theoretical 
discussion of the framentation process at very small scales, we show that enstrophy transfer 
must be space filling, due to the regularity of the flow at any time. Detailed analysis of a 
numerical decaying experiment confirms this picture. Yet ‘intermittency’ is acting at large 
scale due to the presence of coherent structures, namely vortices, which inhibit local 
enstrophy transfer. 

1. Introduction 

The word ‘turbulence’ usually refers to the chaotic motion of fluid systems at high 
Reynolds number. Among the various physical systems which exhibit turbulent 
behaviour, flows in two spatial dimensions have recently received growing attention 
both theoretically and experimentally. With the present generation of supercomputers 
it is possible to reach enough resolution to study the statistical properties of two- 
dimensional small scale turbulence by a direct simulation of the Navier-Stokes 
equations. This is still not available for three-dimensional turbulence except for a few 
cases with a particular spatial symmetry. 

The physics of two-dimensional flows is somehow different from the three- 
dimensional case. For the inviscid two-dimensional case a global regularity theorem 
has been proved together with the uniqueness and existence theorem. Thus no singular- 
ity of the velocity field can develop in a finite time (see, for example, Rose and Sulem 
1978). Moreover, besides energy, any function of vorticity, like enstrophy, is conserved. 
It follows that energy cannot be transferred from large to small scales in two- 
dimensional turbulence. Yet, in analogy with the three-dimensional case, we expect 
that for two-dimensional turbulence there exists an  inertial range where enstrophy is 
cascading from large to small scales (Kraichnan 1967, Batchelor 1969). Former theories 
pointed out the existence of two inertial ranges: a k - 3  enstrophy cascading range for 
the small scales and a k-5’3 reverse energy cascading range for the large scales. On 
the other hand, numerical simulations (Basdevant er ai 1981, McWilliams 1984) with 
both forcing and decaying systems show an  enstrophy cascading range with a spectral 
slope (-4)-(-6) much steeper than -3. Basdevant et ai (1981) argued that this 
difference between theoretical prediction and numerical result is due to both spatial 
and temporal intermittency: enstrophy dissipation is a highly fluctuating quantity whose 
statistical properties significantly atfect the energy spectrum at small scales. Moreover, 
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as noted by Basdevant et a1 (1981), Fornberg (1977) and McWilliams (1984), two- 
dimensional turbulence is characterised by the existence of coherent structures, namely 
vortices, with a lifetime much longer than their characteristic eddy turnover time. It 
is not clear yet which is the link between the existence of coherent structures and a 
strong intermittency in two-dimensional turbulence. Babiano et al (1984a) have tried 
to clarify this point by comparing the energy turbulent spectrum with the variance 
spectrum of a passive scalar. In the phenomenological theory a k-' inertial range for 
the energy corresponds to a k - '  inertial range for the variance spectrum of the passive 
scalars. It turns out that while the energy spectrum has a steeper slope in the inertial 
range, the passive scalar develops a k - '  inertial range. A comparison between the 
vorticity field and the passive scalar field is shown in figure 3 of their paper. There is 
a good correlation between the two fields except at the location of the coherent vortices. 
One may tentatively conclude that, whatever the intermittency in two-dimensional 
turbulence is, coherent structures dominate the energy spectrum. 

In this paper we discuss the role of intermittency in two-dimensional turbulence 
and its link to the formation of coherent structures. In § 2 we review the phenomenologi- 
cal theory in three-dimensional turbulence and compare the fractal nature of intermit- 
tency in  two and three dimensions. We show that, due to the regularity of the flow at 
any time, at very small scales enstrophy transfer should be necessarily space filling. 
As already pointed out by Babiano et a1 (1984b) this result does not imply that the 
energy spectrum should behave with a K 3  slope. We speculate that enstrophy cascade 
can take place, at very small scales, outside coherent structures. To this end, in § 3 
we analyse a numerical experiment for decaying turbulence and compute the spatial 
support of enstrophy cascade at different scales. We indeed find that enstrophy cascade 
is inhibited in the coherent structures which anyway dominate the energy spectrum 
for all scales. We point out the possibility of decomposing the turbulence in two parts: 
a background turbulence flow with a k - 3  inertial range and no phase correlation, which 
almost satisfies the phenomenological theories and  a finite number of vortices which 
advect the background field. Summary and conclusions follow in § 4. 

2. Intermittency in two- and three-dimensional turbulence 

As already pointed out in the introduction, three-dimensional turbulence has physical 
differences with respect to the two-dimensional case. We shall briefly discuss these 
differences with particular emphasis on the intermittency corrections to the Kolmogorov 
law (Kolmogorov 1941). Let 6 v ( r )  be the velocity difference between two points at 
distance r. We can define the structure functions S , , ( r )  as 

S , ( r )  = ( l W r ) l P )  (2.1) 

where ( ) stands for the average on the flow configuration. Then in the inertial range 
S , ( r )  obeys the scaling laws 

S , ( r )  - 6. (2.2) 

The values of lp are related to the singularities of the velocity field. In the original 
Kolmogorov theory for three-dimensional turbulence l,, = p / 3  and using (2.2) we obtain 
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which implies that I a v ( r ) l / r  is singular at very small scales. The limit r + O  means r 
of the order of the Kolmogorov length which goes to zero for infinite Reynolds number. 

The Kolmogorov theory assumes that the set of singularities is space filling, which 
implies that energy dissipation is uniformly distributed in a set A E R 3 .  If we remove 
this assumption, as first pointed out by Landau (Landau and Lifshitz 1971), then we 
can take into account a correction to the Kolmogorov law induced by fluctuations of 
energy dissipation, namely the intermittency. This idea was first carried out by Mandel- 
brot (1974, 1976) and is the basis o f  the p model o f  Frisch er a1 (1978). In the p model 
it is assumed that 

where h = (D , -2 ) /3 ,  DF being the fractal dimension of the set for which (2.4) holds, 
i.e. where energy dissipation is acting. Using (2.4) we can obtain 

In the p model, as in the Kolmogorov theory, there is only one kind of singularity 
and the region where energy is dissipated is a homogeneous fractal object, i.e. it has 
a global dilatation invariance. Frisch and Parisi (1985) pointed out that (2.5) is not 
consistent with experimental data (see, for example, Anselmet er al 1984) for p 3 7. 
This is an  indication that the region containing energy dissipation is not a homogeneous 
fractal and  (2.4) holds for different h. A multifractal model has been recently proposed 
by Benzi et a1 (1984) and Frisch and Parisi (1985). We can simply generalise the p 
model in order to obtain a multifractal model and inhomogeneous fractal objects 

Let us consider the scale I,, = 2-”10, where lo is the scale in which energy is injected. 
I f  at scale I ,  there are N,, active eddies, each eddy l , ( k )  generates eddies of size l , ,+,(k) 
( k  labels the ‘father’ eddy, k = 1 , .  . . , N,,). Because the rate of energy transfer is 
constant among l , , (k)  and l , , + l ( k ) ,  

Here, as in the standard p model, v , , (k)  is the velocity difference in the active eddy 
between two points at distance I ,  and P , , + , ( k )  is the percentage of volume occupied 
by the active eddies l , , - l (k )  generated by the eddy l , , ( k ) .  Equation (2.6) implies that 
in an eddy generated by a particular set of fragmentation P I ,  p 2 , .  . . , Pn, the velocity 
difference Y, is 

Y,, - ,:,3( fi p , )  
, = I  

Using (2.7) the structure functions are 

(2.7) 

Assuming no correlation among different steps of fragmentation (i.e. P(pl ,  . . . , p,,) = 
II:=, P ( p l ) )  by (2.7) and (2.8) we obtain 

(2.9) l = + p  - ln2{p‘1-P/3’} 
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where { } indicates the average over the distribution P ( p ) .  Note that if p is constant 
( p  = 2 D ~ - 3 )  (2.9) is equivalent to (2.5). 

Naively one could think that in two-dimensional turbulence all the previous argu- 
ments can be repeated simply considering an enstrophy cascade instead of an energy 
cascade. This is not possible because in two-dimensional Navier-Stokes equations 
there are no singularities in the velocity field. Indeed it is well known for the two- 
dimensional Euler equation that the following inequality holds for any time (see, for 
example, Rose and Sulem 1978): 

t j v (r )  s constant x rlln r / .  (2.10) 

This is a consequence of vorticity conservation for each fluid particle. Inequality (2.10) 
holds also in the Navier-Stokes equations and implies 

s p  3 P. (2.11) 

Moreover, for a general theorem of probability theory (Feller 1971), lp must be a 
convex function of p .  Assuming 5, = 3 (i.e. a constant forward enstrophy cascade) 
(2.11) and convexity of 5, one obtains (apart from logarithmic corrections) the result 

s p  = P. (2.12) 

Thus we obtain the apparently surprising result that in two-dimensional turbulence 
the Kolmogorov scaling law (2.12) holds also in the presence of intermittency. Note 
that, except for the Kolmogorov law (p,, = l ) ,  any random p model gives wrong results 
in two-dimensional turbulence. Indeed we can repeat the considerations done for the 
three-dimensional case using the assumption of constant enstrophy transfer rate. In 
this case equation (2 .6 )  becomes 

(2.13) 

By (2.13) we obtain for lp a convex function l3 = 3 and consequently inequality (2.11) 
is broken by the singularities bearing in the fragmentation mechanism. We remark 
that this undesired result (i.e. the appearance of singularities of the velocity field) is 
due to the fact that in the fragmentation process P,, is not independent of pn-l, to the 
Bernoullian nature of the random p model. Let us consider a simple modification to 
the cascade model in order to satisfy (2.12). We still consider a constant enstrophy 
t rhsfer  rate, i.e. (2.13), but with the further constraint 

Pfl+l(k) = 1 if vi/ /’, 3 qmax (2.14) 

where vmax is a bound to the enstrophy transfer which reflects the constraint (2.10). 
With (2.14) the fragmentation process now has a Markovian nature because the 

steps of the cascade depend on the previous ones. We think that constraint (2.14) is 
the simplest way, at least in fragmentation models, to avoid singularities. It is easy to 
see that with this model we obtain i,, = p .  Indeed the regions where enstrophy dissipa- 
tion is concentrated have fractal dimension equal to 2, i.e. they occupy an area 
non-decreasing for decreasing scale length. Roughly speaking we do not have a 
multifractal anymore but a ‘checkers’-like structure, at least at very small scales. We 
remark that, unlike three-dimensional turbulence, in the two-dimensional case it is not 
possible to get information on the behaviour of the energy spectrum E ( k )  from a 
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knowledge of lp. With naive dimensional arguments one could conclude that E ( k )  - 
k-’-l2 but this conclusion is wrong if l2 2 2 (see, for example, Babiano er a1 1984b). 
Therefore the only result from the bound (2.10) is that 

E ( k )  - k-“ (Y 2 3 .  (2.15) 

Moreover, neither the value of (Y nor the structure functions (in fact lP = p )  can give 
information about intermittency in two-dimensional turbulence. 

3. Numerical experiments 

For two-dimensional turbulent flows at very high Reynolds number, energy is conserved 
and enstrophy is dissipated. This asymptotic limit is never achieved in the numerical 
experiments because of truncation effects. Recently Sadourny and Basdevant (198 1) 
have introduced the technique of anticipated vorticity for the numerical simulation of 
enstrophy dissipation (see also Leith 1985). Let w be the vorticity and rC, its stream 
function. w satisfies the equation 

d,w+J(rC,,w)= D + F  (3.1) 

where 

w = A +  (3.2) 

where D is dissipation and F is forcing. A simple way to dissipate enstrophy but not 
energy is to assume that D is proportional to J(4,  w * )  where U*  represents physically 
the vorticity of not resolved scales at which viscosity is acting. It follows that for F = 0 

a ,  fw’dx dy = wJ($ ,  U * )  dx dy = - w*J(+, w )  dx dy. (3.3) 5 I 
Basdevant and Sadourny (1983) assumed that 

- w *  = eL[J ($ ,  (3.4) 

where L is a positive linear operator and 8 is a parameter. With (3.4) equation (3.1) 
becomes 

a,w + J ( $ ,  U) - eJ(rL, L ( J ( $ ,  w ) ) )  = F. (3.5) 

We have performed a numerical simulation of equation (3.5) with F = 0, i.e. for decaying 
turbulence. We have chosen for the operator L the form AZp, withp = 1 and 8 = 6 x lo-’’. 
The numerical model is a periodic spectral model (128 x 128 grid points) with the 
Patterson and Orszag (1971) dealiasing procedure applied to the computation of the 
Jacobian. The initial conditions are the same as in McWilliams’ (1984) experiment, 
i.e. a random initial configuration with an asymptotic energy spectrum - k - 3 ,  a total 
energy E = 0.5 and a size of the grid 257. Figure 1 shows the behaviour of enstrophy, 
which is slowly decreasing in time, while energy is conserved to five digit accuracy in 
our computation. Figures 2-5 show the vorticity at four different times. As the system 
is decaying we see the emergence of ‘isolated coherent vortices’ in the flow (McWilliams 
1984). Meanwhile the energy spectrum shows an inertial range with a slope steeper 
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I I I 

0 10 20 30 40 
T i m e  

Figure 1. Enstrophy as a function of time for the 128 x 128 spectral run with anticipated 
vorticity scheme (AVS).  

1 , .  I 
0 0 . 2  0 4  0 6  0 .8  1 . 0  

Figure 2. Vorticity contours at t = 20 time units for the AVS run. The following contours 
are shown: -10, -8, -6 ,  -4, -2  (fine lines) and 2, 4, 6, 8, 10 (bold lines). 

than -3 as shown in figure 6. It is useful to compare figures 4 and 6 with an  experiment 
for which a superviscosity VAAW is used instead of the anticipated vorticity scheme. 
Figures 7 and 8 refer to the numerical simulation of equation 

a,w + ~ ( 9 ,  W )  = - V A A ~  (3.6) 

with the same initial condition of equation (3.5). We see that the energy spectrum in 
figure 8 shows almost the same slope as the simulation with anticipated vorticity (figure 
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Figure 3. The same as  in figure 2 at I = 25 
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Figure 4. The same as in figure 2 at I = 30. 

0 

6) but with a marked dissipative range for large k. At the same time the vorticity field 
(figure 7 )  shows coherent vortices with a somehow larger scale with respect to that of 
figure 4. The inertial range simulated with the anticipated vorticity is characterised by 
the constant flux of enstrophy form large to small scales even for very large values of 
k. To study its spatial support we proceed as follows. For any interval [ k - Sk, k + Sk] 
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O . 1  0.6 

Figure 5. The same as in figure 2 at f = 35 

0 

-8 I I , I I 1 , , 
0 0.5 1 .o 1 . 5  2.0 

log,, k 

Figure 6. Energy spectra for the AVS run at t = 0, 20, 40. 

in the Fourier space we decompose the stream function into three parts: 

(L = ( L k ' +  $k + * k "  (3.7) 

where 

(Lk' = $(PI exP(-iP * x) dP 
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&PI exP(-iP * 1) dP 
k + b k s l p l = k v  

* k " =  1 
$ ( p )  is the Fourier transform of $(x) and kM is the maximum value of k available 
in the numerical experiment (in our case 64). We can also decompose w in a similar 
way: 

(3.8) w = wk' + wk + wk,, . 
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Equation (3.5) then becomes 

d#k' + dlWk + d r W p  + J(  4, Wk' + O k " )  f J(  4, W k )  = D. (3.9) 

Let us now define Pk the projector operator on the Fourier modes in the interval 
[ k  - Sk, k + S k ] .  It follows that 

d , O J k + P k [ J ( $ ,  W k ' + W k " ) + J ( $ ,  W k ) - D ] = o .  (3.10) 

The enstrophy in the range [ k - 6k, k + Sk] is given by CL( k )  = W :  dx dy. Hence 

+&a( k )  = - U k P k [ l (  I,!', W k , +  W k , , ) ]  dx dy 

(3.11) 

The second integral on the RHS of equation (3.11) vanishes identically. The first and 
the third have a clear physical meaning. The third integral parametrises dissipation 
effects. Thus enstrophy cascade is due to the first integral on the RHS of equation 

In the following computation we choose Sk = 5 .  Figure 9 shows the field v k  = 
W k P k [ J ( + ,  W k , + W k " ) ]  for different values of k computed at time t =35. The vorticity 
field is shown in figure 5. A strong enstrophy cascade is acting in the region where 
the two vortices on the upper right-hand corner of figure 5 are merging. This cascade 
is displayed for all the computed values of k showing that there is no time lag between 
the field v k  and the position of the vortices. The merging of the vortices is a characteristic 
of the transient behaviour of the simulation that, we recall, refers to a decaying 
experiment. Going from figure 9(a)  to 9(h)  we see that enstrophy transfer is initially 
located in correspondence of the coherent structures but eventually quite a large area 
is filled uncorrelated or even negatively correlated with the position of vortices. We 
can compute the area of the 'active' region A* of enstrophy transfer using as a definition 
of A*, for each k band, the area for which v k  is greater than 10% of its maximum. 
We remark that this definition of A* is quite arbitrary but it seems reasonable for our 
purpose. The behaviour of A*( k )  is shown in figure 10. The most interesting feature 
of this figure is the minimum of A*( k )  for k - 20-30. This value of k corresponds to 
the decorrelation between the field v k  and the coherent structures as we can see from 
figure 9. We can argue that enstrophy cascade is somehow stopped in the region of 
coherent vortices and for larger values of k the enstrophy transfer is acting outside 
these regions. We note that the growing of A * ( k )  for k 3 20-30 could be due to our 
empirical definition of A*. To clarify the scenario we plot in figure 11 the values of 
supxy /vk(x,  y)I which is sharply decreasing for k < 20-30 and almost constant k 3 20-30. 
This behaviour of supxy 1vkl is consistent with an increase of A * ( k )  because a constant 
flux of enstrophy transfer is indeed observed in the inertial range. It follows by the 
above considerations (regardless the definition of A * ( k ) )  that at k zz 20-30 the enstrophy 
cascade shows a quite sharp transition in its spatial behaviour. This result seems 
qualitatively in agreement with the considerations discussed in 5 2 even if we cannot 
conclude that the spatial support of enstrophy cascade is space filling. One may wonder 
why the energy spectrum does not show any quantitative difference in the range 
k - 20-30 (see figure 6 ) .  Following Basdevant et a1 (1985) we decompose the vorticity 
field into two parts: the coherent structures and the background field. We define the 
coherent structures as 

i 
- I W k P k [ J ( ! b ,  W k ) ]  dx dy+  W k P k [ D l  dx dy. I 

(3.11) and the field W k P k [ J ( $ ,  W k , + W k . , ) ]  is the Support O f  enstrophy cascade. 
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Figure 9. Contour maps of the field qh = w , P , [ J ( $ ,  wi + w h  )], which is the support of 
enstrophy transfer for the scale k (see 5 3 ) .  The maps refer to the AVS run at f = 35. The 
following wavenumber bands are shown: ( a )  5-15,  ( b )  10-20, ( c )  15-25, ( d )  20-30, ( e )  
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(broken lines) are shown 
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Figure 10. 'Active' area against wavenumber k for the configuration of figure 4. 

Figure 11. Maximum value of the enstrophy transfer field for the configuration of figure 4. 

w ( x ,  Y )  for y ) l >  Wth 

w c =  Wth for I w ( x ,  y)l s Wth and w ( x ,  y )  > o (3.12) r-... 
i-.. 

for lo(x, y)I s Wth and w ( x ,  y )  < 0 

and the background field as 

w ( x ,  Y )  for lw(x, y)I < wth 

o b =  w t h  for Iw(x,  y ) (  2 Wth and w ( x ,  y )  > o (3.13) 
for Iw(x,  y)I 3 0 t h  and w ( x ,  y )  < o 

where Wth is a threshold value -20% of the maximum absolute value of the vorticity. 
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Figures 12 and 13 show the energy spectrum related to U ,  and o b .  We note that 
the background field has a k-3  inertial range and the coherent structures show a k - 5  
behaviour for k s 2 0 - 3 0  and a k-3 at very small scales. Moreover, for large k the 
energy spectrum for the coherent structures and the background field are of the same 
order of magnitude. Although our decomposition can be questionable, the results 
shown in figures 12 and 13 are consistent with what it is observed in figure 9. The 
background turbulent field is dynamically active at large k and the power spectrum is 
dominated by the coherent vortices. Invoking the numerical result of Babiano et a1 
(1984a) on the dynamics of a passive scalar, it is tempting to conclude that the 
background is mainly advected by the coherent structures and that the motion of the 
vortices is mainly due to vortex-vortex interactions and to small, probably random, 
perturbations induced by the background field. The background field should have a 
k - 3  inertial range and a space filling fragmentation for enstrophy transfer. If we think 
of intermittency as a fluctuation in the enstrophy cascade then vortices are large scale 
intermittent configurations because they seem to inhibit the cascade process. 

- 8  
0 0.5 1 . 0  1 . 5  2 .  

log10 

Figure 12. Energy spectra for w ,  (see equation (3.12)) for the configuration of figure 4. 

Figure 13. Energy spectra for w b  (see equation (3.13)) for the configuration of figure 4. 
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4. Summary and conclusions 

In this paper we have analysed the enstrophy cascade process in two-dimensional 
turbulent flow. We give quite general arguments to state that a small scale cascade 
should be space filling, i.e. no intermittency is active at very small scale. On the other 
hand, coherent structures seem to stop locally the cascade process. We find a scale 
separation between enstrophy cascade locally induced by the coherent vortices and 
that acting in the background field. The only exception to this case is due to vortex 
merging, which produces enstrophy cascade throughout the inertial range. Vortices 
seem to be ‘cold’ structures at very small scale and this can partially explain their 
stability for times longer than their characteristic eddy turnover time. The background 
field seems to obey a Kolmogorov theory with a k - 3  law. The whole picture which is 
emerging is that there is a possible dynamical decomposition of two-dimensional 
turbulent flow: few degrees of fredom (namely the vortices) interacting mainly with 
each other and a background field advected by the vortices and dynamically active 
only at very small scales. The statistical properties of the background field could be 
inferred by closure theories which, in absence of intermittency, are good candidates 
to model the system. Higher resolution experiments are in progress to verify the 
consistency of the above scenario. 
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